A combinatorial formula for fusion coefficients

نویسندگان

  • Jennifer Morse
  • Anne Schilling
چکیده

Using the expansion of the inverse of the Kostka matrix in terms of tabloids as presented by Eğecioğlu and Remmel, we show that the fusion coefficients can be expressed as an alternating sum over cylindric tableaux. Cylindric tableaux are skew tableaux with a certain cyclic symmetry. When the skew shape of the tableau has a cutting point, meaning that the cylindric skew shape is not connected, or if its weight has at most two parts, we give a positive combinatorial formula for the fusion coefficients. The proof uses a slight modification of a sign-reversing involution introduced by Remmel and Shimozono. We discuss how this approach may work in general. Résumé. En utilisant l’expansion de l’inverse de la matrice Kostka en termes de tabloı̈des introduite par Eğecioğlu et Remmel, nous montrons que les coefficients de fusion peuvent être exprimés comme une somme alternée sur les tableaux cylindriques. Les tableaux cylindriques sont des tableaux qui présentent une certaine symétrie cyclique. Lorsque la forme du tableau a un point de coupure, ce qui signifie que la forme cylindrique n’est pas connecté, ou lorsque son poids a au plus deux parts, nous donnons une formule combinatoire positive des coefficients de fusion. La démonstration utilise une légère modification de l’involution qui change le signe introduite par Remmel et Shimozono. Nous discutons comment cette approche pourrait fonctionner en général.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial interpretations of the q-Faulhaber and q-Salié coefficients

Recently, Guo and Zeng discovered two families of polynomials featuring in a qanalogue of Faulhaber’s formula for the sums of powers and a q-analogue of Gessel-Viennot’s formula involving Salié’s coefficients for the alternating sums of powers. In this paper, we show that these are polynomials with symmetric, nonnegative integral coefficients by refining Gessel-Viennot’s combinatorial interpret...

متن کامل

The Schur Expansion of Macdonald Polynomials

Building on Haglund’s combinatorial formula for the transformed Macdonald polynomials, we provide a purely combinatorial proof of Macdonald positivity using dual equivalence graphs and give a combinatorial formula for the coefficients in the Schur expansion.

متن کامل

A SPECIAL CASE OF sl(n)-FUSION COEFFICIENTS

We give a combinatorial description of sl(n)-fusion coefficients in the case where one partition has at most two columns. As a result we establish some properties for this case including solving the conjecture that fusion coefficients are increasing with respect to the level k.

متن کامل

On multi F-nomial coefficients

In response to [6], we discover the looked for inversion formula for F -nomial coefficients. Before supplying its proof, we generalize F -nomial coefficients to multi F -nomial coefficients and we give their combinatorial interpretation in cobweb posets language, as the number of maximal-disjoint blocks of the form σPk1,k2,...,ks of layer 〈Φ1 → Φn〉. Then we present inversion formula for F -nomi...

متن کامل

Grothendieck Classes of Quiver Varieties

We prove a formula for the structure sheaf of a quiver variety in the Grothendieck ring of its embedding variety. This formula generalizes and gives new expressions for Grothendieck polynomials. Our formula is stated in terms of coefficients that are uniquely determined by the geometry and can be computed by an explicit combinatorial algorithm. We conjecture that these coefficients have signs t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012